
C++ Matrix Class
E. Robert Tisdale

Abstract

 This paper presents a simple, fast, efficient C++ Matrix
class designed for scientists and engineers. The basic
operations were implemented in C++ using the Gnu g++
compiler (version 2.3.3) on Sun 4 computers running UNIX
(SunOS Release 4.1.1). More sophisticated algorithms were
implemented by interfacing with existing C routines. In
order to demonstrate an application of the Matrix class, it
was used to implement the backward error propagation
algorithm for multi-layer, feed-forward artificial neural
networks.

1    Introduction
The Array and Matrix classes permit two dimensional arrays to be treated as objects
that can be included in arithmetic expressions with infix operators in much the same
way as are scalar values. The array elements are stored in memory in row major
order. Row (column) vectors are two dimensional arrays with just one row (column).
A matrix with exactly one row and one column is a scalar.

1.1    class Array
An Array object contains four data members:

1. int L is the length of rows,

2. int M is the number of rows,

3. int N is the number of columns and

4. double* X is a pointer to the array.

An array object points to a contiguous block of memory organized into M rows of L
numbers1 which represents an M×N submatrix with N≤L. See figure 1.

Figure 1: An array object points to a contiguous block of memory organized into M
rows of L numbers which represents an M×N submatrix with N≤L.

1 The Array class may actually be derived from single or double precision real or
complex numbers.

1

Whenever an array object is declared explicitly, the user is responsible for allocating
and deallocating memory for it. Almost all matrix operations are defined on class
Array. But many operations return an object of class Matrix.

1.2    class Matrix
The derived class Matrix inherits all of the data members and operations of the base
class Array. But it automatically allocates and deallocates memory for the array.
Storage allocated for local variables (or intermediate results during expression
evaluation) is deallocated as soon as they exit scope.

1.3    Indexing
Array and Matrix class objects are indexed in exactly the same way as two
dimensional C arrays. If A is an M×N array, A[i] returns a pointer of type double*
to the first element of row i and A[i][j] returns a reference of type double& to
the element in column j of row i where 0≤i<M and 0≤j<N.

1.4    Construction
The declaration Matrix A(m, n) creates an uninitialized m×n matrix. An optional
third argument, scalar s, in the declaration Matrix A(m, n, s) initializes all the
elements to s. The declaration Matrix x(n) is equivalent to the declaration
Matrix x(1, n) and creates a uninitialized 1×n row vector. The declaration
Matrix B(A) creates a new matrix B which is the same size as matrix A but
allocates storage at a different location and copies the array. An optional third
argument, pointer p, in the declaration Matrix A(m, n, p) creates an object
which points to an m×n array at location p. This declaration should be used with care
as the compiler will automatically generate code to delete the array at location p as
soon as matrix A exits scope. The declaration Array A(m, n, p) should be used
instead if the array at location p must survive matrix A.

1.5    Arithmetic Operations
Unary plus, +A =A, unary minus, -A =−A, scalar multiplication, s*A =sA=As= A*s,
scalar division, A/s =A/s, and element by element addition, A + B =A+B,
subtraction, A - B =A−B, multiplication, A*B =A⋅B, and division, A/B =A/B, all
have the expected meanings. But other useful operations have been defined as well.

1.5.1    Matrix Multiplication

Matrix multiplication is effected by the infix operator, %, which computes an inner
product, A%B , on the rows of the operands. This operation has indexing and memory
referencing advantages2 that tend to outweigh the cost of transposing either or both of
the operands.

2 Striding across rows when multiplying large matrices results in frequent cache
misses and page faults.

2

1.5.2    Scalar Operations

The same scalar operation is applied to every element of the array.

Scalar by Matrix

Addition

s + A .

Subtraction

s - A .

Division

s/A .

Matrix by Scalar

Addition

A + s .

Subtraction

A - s .

1.5.3    Vector Operations

Element by element operations between operands of different sizes are fatal errors
unless one of the operands is a row (column) vector with the same number of
columns (rows) as the other operand3. The row (column) vector is simply combined
with each of the rows (columns) of the matrix.

Row Vectors

Addition

x + A A + x.

Subtraction

x - A and A - x .

Multiplication

x*A =Adiag(⃗x)= A*x.

3 An operand with exactly one row and one column is treated as a scalar

3

Division

x/A and A/x .

Column Vectors

Addition

x + A = ⃗x⃗1+A=A+ ⃗x⃗1= A + x.

Subtraction

x - A = ⃗x⃗1−A and A - x =A−⃗x ⃗1.

Multiplication

x*A =diag(⃗x)A= A*x.

Division

x/A = ⃗x⃗1/A and A/x =A/(⃗x ⃗1).

1.6    Shift Operators
If the left operand is an array, A, and the right operand is an integer, n, the shift
operator << (>>) returns a copy of A shifted n columns left (right). The operator <<
fills the empty columns with zeros. The operator >> copies the leftmost column into
the empty columns. If the left operand is an istream and the right operand is an
array, the right shift operator, >>, inputs numbers separated by white spaces in row
major order until the entire array is filled. If the left operand is an ostream and the
right operand is an array, the left shift operator, <<, outputs the entire array in row
major order using the default output format and terminating each row with a new line.
The format function specifies the default output format and returns an empty
character string. It has three arguments. The first argument specifies the output format
(initially "%g") for each element of the array. The second argument (optional)
specifies the number (initially 4) of elements to display on each line. The third
argument (optional) specifies the character string (initially " ") which separate each
element displayed on a line.

1.7    Other Operators
Two arrays with the same number of columns can be stacked, (A^B) . Two arrays
with the same number of rows can be adjoined, (A|B) . The outer product, (A&B) ,
on the rows of the operands should be avoided unless both operands are row vectors.

1.8    Assignment Operators
The assignment operator, =, copies each element of its right hand side into the
corresponding element on its left hand side if both matrices are the same size. If the
right hand side is a row (column) vector with the same number of rows (columns) of

4

the matrix on the left hand side, then it is copied into each of the rows (columns) of
the matrix. If the right hand side is a scalar, then it is copied into every element of the
matrix on the left hand side. Operators +=, -=, *=, /=, <<= and >>= were
implemented with the expected meaning. But operator %= was not implemented.

1.9    Member Functions

1.9.1    Data Members

Although access to the data members, L, M, N and X, is not restricted in the
implementation, the user must admit the possibility of an alternate implementation
and should reference them only through the respective member functions, l(), m(),
n() and x().

1.9.2    Sub Array

A.s(i, m, j, n) is an m×n sub array beginning with row i and column j of
array (matrix) A. A.s(i, m, j) is an m×(N−j) sub array beginning with row i and
column j. A.s(i, m) is m rows beginning with row i. A.s(i) is row i. And
A.s() is just row 0.

1.9.3    Sub Matrix

Since the sub array member function is an array object, it should only be applied to
Array or Matrix objects declared explicitly by the user. It should never be applied to
intermediate results in expressions because the storage allocated for the intermediate
result may be reallocated upon return from the sub array function. The sub matrix
member function is similar to the sub array function except that it actually allocates
storage and copies the sub array into it. The intermediate result can safely be
destroyed since it is no longer needed.

A._(i, m, j, n) returns an m×n sub matrix beginning with row i and
column j of array (matrix) A. A._(i, m, j) returns an m×(N−j) sub matrix
beginning with row i and column j. A._(i, m) returns m rows beginning with
row i. A._(i) is row i. And A._() returns just row 0.

1.9.4    Transpose

A.t() .

1.9.5    Inverse

A.i() .

1.9.6    Row Sum

A.sum() .

1.9.7    Row Sum of Squares

A.sumsq() .

5

1.9.8    Mapping

A.map(f) .

1.9.9    Row Minimums

A.min() .

1.9.10    Row Maximums

A.max() .

1.9.11    Minimum Index

A.min_index() =iL+j where .

1.9.12    Maximum Index

A.max_index() =iL+j where .

1.9.13    Index

A.index(s) =iL+j where .

1.9.14    Resize

A.resize(m, n) converts A to an m×n matrix. But resize can be called with
any of the arguments passed to Matrix constructors.

1.10    Comparison Operators
A comparison is always valid when one of the operands in a comparison is a scalar.
For example, the expression s == A is true if and only if for all i and j. A
comparison of the form A @ B where @ ∈{<, <=, ==, >=, >} is valid if and only if
B - A is valid and true if and only if 0 @ B - A is true.

2    Basetypes
The Matrix class was implemented for double and complex basetypes. The fast
fourier cosine transform, ffct, and the signum function, sgn, are included in the
doubleArray class. The complexArray class has no <, <=, > or >= operators
and no min, max, min_index or max_index member functions but includes
fft, polar, conj, real, imag, norm and arg functions. Both classes include
exp, log, sin, cos, tan, sinh, cosh, tanh, sqrt and abs functions.

3    Genclass
Instead of maintaining separate sources for both basetypes, the Gnu container class
prototype mechanism[Error: Reference source not found] was used. The
Matrix.hP header prototype file contains the class definitions and short inline
functions. The Matrix.ccP source prototype file contains code for the longer

6

library routines. The Gnu genclass utility replaces every occurrence of <T> in
these files with the desired basetype. But since the basetype is not the only difference
between the container classes, the genclass shell script was modified to use the m4
macro processor which selectively includes code depending upon the basetype. The
genclass double val Matrix or
genclass complex val Matrix command generates the respective header
and source files, double.Matrix.h and double.Matrix.C or
complex.Matrix.h and complex.Matrix.C, for the double or complex
basetypes respectively.

4    Matrix Library
The Matrix class is intended to serve as a convenient interface to existing software.
Matrix inversion and fast fourier transforms have been implemented with routines
adapted from “Numerical Recipes in C”[Error: Reference source not found]. The
singular value decomposition algorithm, svdcmp, was used to implement matrix
inversion. The four1, realft and cosft routines were used to implement fourier
transforms. The doubleMatrix.C, complexMatrix.C, four1.C, realft.C
and cosft.C source files are compiled to object files using the g++ compiler. Then
the ar program is used to combine the object files into a single library archive,
libMatrix.a. And the ranlib program is used to add a table of contents so that
the routines can be linked more rapidly.

5    Backprop
The backward error propagation algorithm is illustrated in figure 2. An input/output
pair is selected at random from the training sample. The input, ⃗x, is fed into the
bottom layer, 0, of the network. The signals, , feed forward, up through the network.
The output of each layer is the input for the next layer. The difference between the
desired output, ⃗y, and the output, , of the top layer, K−1, is used to compute an
equivalent error, , which is fed back into the top layer. The equivalent errors, ,
propagate backward, down through the network. The equivalent errors are used to
update the biases, , and connection weights, , in each layer.

Figure 2: The signals, , feed forward, up through the layers. The equivalent errors, ,
feed backward, down through the layers. The equivalent errors are used to update the
biases, , and the connection weights, .

The backward error propagation (backprop) algorithm can be summarized in three
steps:

1. Feed Forward

(1)

(2)

7

(3)

2. Back Propagate

(4)

(5)

3. Update

(6)

(7)

where the learning rate, η, is a small number.
A multi-layer, feed-forward, artificial neural network can approximate any

continuous function arbitrarily closely provided that there are enough (non-linear)
neurons in the hidden layers. The output neurons are linear and the hyperbolic
tangent, tanh(), is used for the non-linear hidden neurons so that the derivatives, , are⋅
easily calculated.

The backprop algorithm itself is easy to implement with the C++ Matrix class.

x[0] = x;
for (k = 0; k < K-1; k++)      // Feed Forward
    x[k+1] = tanh(b[k] + x[k]%W[k]);
x[K] = b[K-1] + x[K-1]%W[K-1];

d[K-1] = eta*(y - x[K]);      // Back Propagate
for (k = K-1; k > 0; k--)
    d[k-1] = d[k]%W[k].t()*(1.0 - x[k]*x[k]);

for (k = 0; k < K; k++)        // Update
    {
        b[k] += d[k];
        W[k] += d[k]&x[k];
    };

The rest of the backprop program processes command line options, constructs
arrays of matrices for the network and the training sample and reads data into them
then writes the network matrices out again before it terminates. Network and training
sample data are kept in separate files with different formats detailed in table 1 and
table 2 respectively.

K # of layers
of inputs to layer 0
of inputs to layer 1
layer 0 biases & weights
of inputs to layer 2
layer 1 biases & weights

8

⋮
number of outputs
layer K−1 biases & weights

Table 1: Network file format.

m # of examples
example 0
example 1⋮
example m−1

Table 2: Sample file format.

5.1    Spiral Problem
A three layer network, N(2,5,10,2), with two inputs, five hidden neurons in the first
layer, ten hidden neurons in the second layer and two output neurons was used trained
to compute the Cartesian coordinates,

(x,y)= ⃗f(,φ)=(cos(−φ), sin(−φ)),ϱ ϱ ϱ ϱ ϱ (8)

of a point on a spiral where 0≤ <π and 0≤φ<π are the radius and angle respectively.ϱ
The network biases and connection weights were initialized to small random

numbers and stored in file ffnet.new. The training sample is stored in file
ffnet.S. Training is accomplished in three steps:

1. mv ffnet.new ffnet.old
Move the file ffnet.new to file ffnet.old.

2. cat ffnet.old ffnet.S | (backprop -v > ffnet.new)
>>& ffnet.err &
The program reads from standard input and writes to standard output. The
ffnet.old and ffnet.S files are concatenate together and piped to the
backprop program. The backprop output is redirected to file
ffnet.new. And any error messages are appended to file ffnet.err. It
runs in the background so that the user can continue working until the
program terminates.

3. cat ffnet.new ffnet.S | evaluate | graph -m 0 | plot
In order to evaluate the network performance, the user plots the network
output versus the desired output for every example in the training sample. The

9

ffnet.new and ffnet.S files are concatenated together, piped through
evaluate and graph to plot which displays the plot on the user’s
terminal.

The previous steps can be repeated until the user concludes that the performance is
acceptable or that the network will not learn the function.

A    Notation
An N element row or column vector is usually denoted by a lower case symbol (i.e.
⃗a). And an M×N matrix is usually denoted by an upper case symbol (i.e. A). Row
0≤i<M of matrix A is denoted . Column 0≤j<N of matrix A is denoted . And denotes
the element in column j of row i. The inverse and transpose of matrix A are denoted
and respectively. The vector ⃗1 is a row vector of 1s. The matrix diag(⃗a) is an N×N
diagonal matrix where the diagonal elements are the N elements of vector ⃗a. The
expression is a row vector and is a matrix composed of scalar elements, and
respectively. But is a matrix composed of column vectors, . Matrix multiplication,
AB, and scalar multiplication, sA=As, are denoted by juxtaposition. But scalar
division is denoted, A/s. Element by element addition, subtraction, multiplication,
division and function evaluation are denoted A+B, A−B, A⋅B, A/B and f(A)
respectively.

10

